Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Polymeric aqua(glutarato)(hydrogen glutarato)lanthanum(III) monohydrate

Belkacem Benmerad, ${ }^{\text {a }}$ Achoura Guehria-Laidoudi, ${ }^{\text {a }}$ Fadila Balegroune, ${ }^{\text {a }}$ Henrik Birkedal ${ }^{\text {b* }}$ and Gervais Chapuis ${ }^{\text {b }}$

${ }^{\text {a }}$ Laboratoire de Cristallographie Appliquée, Institut de Chimie, USTHB, BP 32, El-Alia, 16111 Bab-Ezzouar Alger, Algeria, and ${ }^{\mathbf{b}}$ Institute of Crystallography, University of Lausanne, BSP, Dorigny, CH-1015 Lausanne, Switzerland Correspondence e-mail: henrik.birkedal@ic.unil.ch

Received 21 January 2000
Accepted 5 April 2000
The structure of the title compound, $\left[\mathrm{La}\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{4}\right)\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$, consists of dense layers formed by chains of one-edge-sharing $\mathrm{LaO}_{9}\left(\mathrm{H}_{2} \mathrm{O}\right)$ polyhedra, linked together by the glutarate ligand. The three-dimensional polymeric structure, built up through connection of these layers by the hydrogen glutarate ligand, exhibits cavities accommodating a guest water molecule. The lanthanum ion is tenfold coordinated by four glutarates, acting as bridging-chelating carboxylate groups, by three hydrogen glutarates, three times monodentate, and by one water molecule. Its coordination polyhedron is highly distorted and intermediate between a bicapped dodecahedron and a tetracapped trigonal prism. Hydrogen bonding links the two water molecules and the framework built up from this polynuclear coordination polymer. A very short hydrogen bond, $D \cdots A=2.484$ (3) \AA, links the protonated with the deprotonated acid groups in the hydrogen glutarate.

Comment

Aliphatic dicarboxylic acids, $\mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{COOH}$, present interesting complexing properties. This is due to the flexibility of the ligand which may be completely or only partially deprotonated. It has a large variation in coordination behaviour, even with large values of n, showing both polymonodentate and/or chelating modes. This allows for clusters, cage structures or open frameworks. Combined with metallic cations assuming high coordination numbers, e.g. the rare earths, these ligands often yield infinite frameworks built up of polynuclear coordination polymers. This is due to the low directionality of the mainly electrostatic bonding of these cations. Two structural studies have been published on lanthanide glutarates (Głowiak et al., 1986; Serpaggi \& Férey, 1998). Both studies exclude the lanthanum glutarate, which has not been synthesized so far.

We report in this paper the structure of the first lanthanum(III) compound obtained with glutaric acid: [La$\left.(\mathrm{H} L)(L)\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$, (I). It contains hydrogen glutarate $(\mathrm{H} L)$
and glutarate (L) groups. One interesting feature of the structure is the infinite helicoidal chains of one-edge-sharing $\mathrm{LaO}_{9}\left(\mathrm{H}_{2} \mathrm{O}\right)$ polyhedra running along the [010] direction (Fig. 1). The repeat distance between two nearest-neighbour La^{3+} ions within the chain is $4.429 \AA$. The La^{3+} ions are slightly displaced, by $0.32 \AA$, off the helical axis. The structure can be regarded as dense layers parallel to the (100) plane located around $x=\frac{1}{4}$ and $x=\frac{3}{4}$. These are formed by the polyhedral chains described above, linked together by the glutarates running along the [001] direction. The layers are connected through the monodeprotonated glutarates building a threedimensional polymeric structure. Their packing results in cavities accommodating one guest water molecule (Fig. 2).

Fig. 3 shows the tenfold coordination of La^{3+}. The coordination sphere consists of four glutarates, three hydrogen glutarates and one water molecule. Although the dispersion of the bond lengths of lanthanum to oxygen is high [2.488 (2)2.774 (2) \AA, see Table 1], the average value of these distances is the same as otherwise found for ten-coordinated lanthanum (Marrot \& Trombe, 1993, 1994). The glutarate ligand L is a bridging-chelating carboxylate group, in that it is bidentate by its two functions and one of the chelating O atoms bridges an adjacent metal atom. The doubly ligating O atoms (O11 and O 13) show one short and one long $\mathrm{La}-\mathrm{O}$ distance. The long distance is, as expected, associated with the bidentate function. The geometry of the two carboxylate groups of L is almost the same [the differences between the bond lengths are 0.000 (3) $\left(\mathrm{La}-\mathrm{O} 11^{\mathrm{ii}} / \mathrm{La}-\mathrm{O} 13_{\text {short }}^{\mathrm{i}}\right), 0.055$ (3) $\left(\mathrm{La}-\mathrm{O} 11 / \mathrm{La}-\mathrm{O} 13_{\text {long }}^{\text {iii }}\right)$ and 0.017 (3) $\left.\AA\left(\mathrm{La}-\mathrm{O} 12 / \mathrm{La}-\mathrm{O} 14_{\text {monodentate }}^{\mathrm{iii}}\right)\right]$. This coordination leads to the infinite chain of pairs along the [010] direction and makes up the dense layers mentioned above.

The hydrogen glutarate ligand, $\mathrm{H} L$, is three times monodentate, coordinating with all its O atoms, except the oxygen which belongs to the hydroxyl function. The dispersion of $\mathrm{La}-\mathrm{O}$ distances is smaller in this ligand [between 2.590 (2) and 2.699 (2) Å]. The distances within the acid group are somewhat different from what would be expected: they are almost the same in the two ends [C21-O21 1.293 (4) and

Figure 1
Chains of lanthanum polyhedra running along [010].

Figure 2
Perspective view of the packing seen along the b axis. Only H atoms bound to O atoms have been included. Hydrogen bonds are indicated by dashed lines. Note the water-containing cavity in the centre. Full displacement ellipsoids are used for the fully deprotonated ligand L, while open ellipsoids are used for $\mathrm{H} L$. Ellipsoids are drawn at the 50% probability level.

C25-O24 1.292 (4) Å, and C21-O22 1.240 (4) and C25O23 1.242 (4) \AA], despite the fact that one is deprotonated and the other is protonated. This is different from the expected values if we refer to the usual distances of $1.214 \AA$ for $\mathrm{C}=\mathrm{O}$ and $1.308 \AA$ for $\mathrm{C}-\mathrm{OH}$ (Allen et al., 1995). However, this bonding situation resembles that of salts of dicarboxylic acids (Speakman, 1972). In addition, the $\mathrm{C}-\mathrm{C}$ distances adjacent to the acid groups fit exactly with expected values: C21-C22 is 1.520 (5) \AA, which is expected for the $\mathrm{C}-\mathrm{C}$ distance in $\mathrm{C}-$
COO^{-}(Allen et al., 1995); $\mathrm{C} 24-\mathrm{C} 25$ is 1.504 (5), while the expected $\mathrm{C}-\mathrm{C}$ distance in $\mathrm{C}-\mathrm{COOH}$ is $1.502 \AA$.

The conformation of the two independent ligands L and $\mathrm{H} L$ is completely different, as indicated by the dihedral angles in each ligand (Table 1). L adopts an extended conformation, while $\mathrm{H} L$ is twisted (Fig. 3). All the CCOO groups are planar. In $L, \mathrm{C} 13, \mathrm{C} 14$ and C15 are the only coplanar C atoms. This plane forms angles of $30.25(20)$ and $17.45(17)^{\circ}$ with the $\mathrm{C} 12-\mathrm{C} 11-\mathrm{O} 11-\mathrm{O} 12$ and $\mathrm{C} 14-\mathrm{C} 15-\mathrm{O} 13-\mathrm{O} 14$ planes, respectively. In HL, atoms C21, C22, C23 and C24 form a plane that has an angle of 71.5 (2) ${ }^{\circ}$ with the $\mathrm{C} 22-\mathrm{C} 21-$ $\mathrm{O} 21-\mathrm{O} 22$ plane and 73.3° with the $\mathrm{C} 24-\mathrm{C} 25-\mathrm{O} 23-\mathrm{O} 24$ plane. The angle between the two acid planes is $30.40(11)^{\circ}$ in L, while in $\mathrm{H} L$ it is $40.49(19)^{\circ}$.

The coordination polyhedron is very distorted and may be described as intermediate between a bicapped dodecahedron and a tetracapped trigonal prism (Kepert, 1965; Marrot \& Trombe, 1993).

Hydrogen-bonding geometries are given in Table 2. The protonated acid group of $\mathrm{H} L$ donates the H atom to a very short hydrogen bond to the carboxylate end of $\mathrm{H} L$ (see Fig. 3). This strong hydrogen bond probably stabilizes the coordination geometry. Similar hydrogen bonds are found in acid salts of dicarboxylic acids in which hydrogen dicarboxylate ions are linked by short hydrogen bonds into infinite chains (Speakman, 1972).

Another framework-stabilizing hydrogen bond is present between the coordinating water molecule and the deprotonated acid group of $\mathrm{H} L$. The non-coordinating water molecule is kept in place by hydrogen bonding with the coordinating

Figure 3
Coordination around the lanthanum ion, including the numbering scheme and anisotropic displacement ellipsoids. Note the strong $\mathrm{O} 24-\mathrm{H} 24 \ldots \mathrm{O} 21^{\text {iv }}$ hydrogen bond. Only the unique chains have been labelled completely. The symmetry operations are as in Table 1. The view is along the b axis. Full displacement ellipsoids are used for the fully deprotonated ligand L, while open ellipsoids are used for $\mathrm{H} L$. Ellipsoids are drawn at the 50% probability level.
framework (Fig. 2). It is disordered (see Experimental), but the disorder could not be resolved with the present data. Due to the disorder, there is a very short hydrogen-hydrogen contact, $\mathrm{H} 2 W 1 \cdots \mathrm{H} 2 W 1^{\mathrm{iii}}=1.90 \AA$ [symmetry code: (iii) $-x$, $2-y, 1-z]$, and the $\mathrm{O} 2 W \cdots \mathrm{O} 2 W$ hydrogen bond has a distorted geometry. It can reasonably be assumed that the non-coordinating water plays a templating role during crystallization.

The framework created by the packing is that of parallelepipeds formed by the La^{3+} ions. The shortest dimensions of the La parallelepipeds are along the b axis (the helical axis). In the ac plane, the dimensions are $9.96 \times 9.78 \AA^{2}$, with a major angle of 124.6°.

This structure is closely related to the two isostructural compounds $\mathrm{Nd}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{4}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Głowiak et al., 1986) and $\mathrm{Nd}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{4}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Serpaggi \& Férey, 1998). The heavier lanthanide structures (Nd and heavier) are all isostructural, at least when using the same synthesis path (Serpaggi \& Férey, 1998). Nd is ninefold coordinated while here we find tenfold coordination. The Nd structures crystallize in $C 2 / c$ and show an almost square grid of Nd ions. The Nd structures are related to that of (I) by exchanging a and b. The solvent-containing cavities are truly open in the Nd compound, leading to open solvent channels. In the present structure, they are collapsed into isolated cavities from which no easy solvent-diffusion path is present.

The differences between the heavier lanthanides and the La structure point to the possibility of obtaining new phases by varying the synthesis temperature and pH , and, consequently, the number of water molecules of crystallization. The importance of this factor is underlined by the fact that the glutarates of all the lanthanoids have been obtained previously except the glutarate of lanthanum.

Experimental

The title compound was obtained by applying grown phase under reflux, the preparation process being comparable with that used by Marrot \& Trombe (1994). After mixing appropriate amounts of glutaric acid and lanthanum oxide, with carefully controlled pH and temperature, single crystals were obtained from the mother liquor after 10 d .

Crystal data

```
\(\left[\operatorname{Ln}\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}\)
\(M_{r}=436.15\)
Orthorhombic, Pbca
\(a=16.4027\) (6) A
\(b=8.76805(19) \AA\)
\(c=19.5576\) (4) \(\AA\)
\(V=2812.76(13) \AA^{3}\)
\(Z=8\)
\(D_{x}=2.060 \mathrm{Mg} \mathrm{m}^{-3}\)
```


Data collection

Kuma CCD diffractometer
Oscillation method, φ and ω scans Absorption correction: Gaussian ($X P R E P$; Siemens 1996a)
$T_{\text {min }}=0.576, T_{\text {max }}=0.906$ 25012 measured reflections 2992 independent reflections

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

La-O11	2.776 (2)	C12-C13	1.522 (4)
La-O12	2.584 (2)	C13-C14	1.524 (4)
$\mathrm{La}-\mathrm{O} 11{ }^{\text {i }}$	2.488 (2)	C14-C15	1.517 (4)
$\mathrm{La}-\mathrm{O} 13{ }^{\text {ii }}$	2.721 (2)	C15-O13	1.276 (3)
$\mathrm{La}-\mathrm{O} 14^{\text {ii }}$	2.601 (2)	C15-O14	1.255 (3)
$\mathrm{La}-\mathrm{O} 13{ }^{\text {iii }}$	2.488 (2)	C21-O21	1.293 (4)
$\mathrm{La}-\mathrm{O} 21$	2.692 (2)	C21-O22	1.240 (4)
$\mathrm{La}-\mathrm{O} 22{ }^{\text {i }}$	2.590 (2)	C21-C22	1.520 (5)
$\mathrm{La}-\mathrm{O} 23{ }^{\text {iv }}$	2.699 (2)	C22-C23	1.531 (5)
La-O1W	2.603 (3)	C23-C24	1.528 (5)
C11-O11	1.275 (3)	C24-C25	1.504 (5)
C11-O12	1.256 (3)	C25-O23	1.242 (4)
C11-C12	1.514 (4)	C25-O24	1.292 (4)
$\mathrm{O} 11-\mathrm{La}-\mathrm{O} 12$	48.27 (6)	$\mathrm{La}^{\text {v }}-\mathrm{O} 11-\mathrm{La}$	114.47 (7)
O11-La-O11 ${ }^{\text {i }}$	113.91 (7)	$\mathrm{La}^{\text {vi }}-\mathrm{O} 13-\mathrm{La}^{\text {vii }}$	116.41 (7)
$\mathrm{O} 11^{\mathrm{i}}-\mathrm{La}-\mathrm{O} 12$	78.25 (7)	O12-C11-O11	120.6 (3)
O13 ${ }^{\text {iii }}-\mathrm{La}-\mathrm{O} 14^{\text {ii }}$	48.76 (6)	O14-C15-O13	120.7 (3)
O13 ${ }^{\text {ii }}-\mathrm{La}-\mathrm{O} 13^{\text {iii }}$	120.95 (8)	O22-C21-O21	122.8 (3)
$\mathrm{O} 13{ }^{\text {iii }}-\mathrm{La}-\mathrm{O} 14^{\text {ii }}$	83.29 (7)	$\mathrm{O} 23-\mathrm{C} 25-\mathrm{O} 24$	122.8 (3)
$\mathrm{O} 21-\mathrm{La}-\mathrm{O} 22^{\text {i }}$	131.69 (7)		
O11-C11-C12-C13	-158.3 (3)	$\mathrm{O} 21-\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 23$	-107.7 (4)
$\mathrm{O} 12-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	20.7 (5)	$\mathrm{O} 22-\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 23$	70.5 (4)
C11-C12-C13-C14	174.3 (3)	C21-C22-C23-C24	-179.9 (3)
C12-C13-C14-C15	-169.2 (3)	C22-C23-C24-C25	61.7 (5)
O13-C15-C14-C13	162.2 (3)	O23-C25-C24-C23	-156.1 (4)
O14-C15-C14-C13	-17.1 (5)	O24-C25-C24-C23	23.4 (5)
O11-C11-C15-O13	9.9 (5)	$\mathrm{O} 21-\mathrm{C} 21-\mathrm{C} 25-\mathrm{O} 23$	49.8 (5)
O11-C11-C15-O14	-148.3 (4)	$\mathrm{O} 21-\mathrm{C} 21-\mathrm{C} 25-\mathrm{O} 24$	169.5 (4)
O12-C11-C15-O13	165.5 (4)	$\mathrm{O} 22-\mathrm{C} 21-\mathrm{C} 25-\mathrm{O} 23$	-138.5 (4)
O12-C11-C15-O14	7.4 (3)	$\mathrm{O} 22-\mathrm{C} 21-\mathrm{C} 25-\mathrm{O} 24$	-18.8 (3)

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.049$
$S=1.188$
2992 reflections
204 parameters
H atoms treated by a mixture of independent and constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+6.3345 P\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.002$
$\Delta \rho_{\text {max }}=1.28$ e \AA^{-3} refinement
Table 2
Hydrogen-bonding geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 1 W 2 \cdots \mathrm{O} 23^{\text {i }}$	0.82	2.04	2.857 (3)	174
$\mathrm{O} 1 W-\mathrm{H} 1 W 1 \cdots \mathrm{O} 2 W^{\text {ii }}$	0.82	1.94	2.764 (4)	178
$\mathrm{O} 2 W-\mathrm{H} 2 W 1 \cdots \mathrm{O} 2 W^{\text {iii }}$	0.82	2.35	2.960 (8)	132
$\mathrm{O} 2 W-\mathrm{H} 2 W 2 \cdots \mathrm{O} 12$	0.82	2.04	2.856 (4)	173
$\mathrm{O} 24-\mathrm{H} 24 \cdots \mathrm{O} 21^{\text {iv }}$	0.82	1.67	2.484 (3)	176

Symmetry codes: (i) $\frac{1}{2}+x, y, \frac{1}{2}-z$; (ii) $\frac{1}{2}+x, \frac{3}{2}-y, 1-z$; (iii) $-x, 2-y, 1-z$; (iv) $-x, \frac{1}{2}+y, \frac{1}{2}-z$.

> H atoms on C atoms were generated (after having been observed in the difference map) and refined in the riding model with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$. The acid-group H atom was refined as a rotating riding atom. The water H atoms were picked from the difference map and included with restraints $d(\mathrm{O}-\mathrm{H})=0.820(5)$ and $d(\mathrm{H} \cdots \mathrm{H})=$ 1.30 (1) \AA, producing an angle of $\sim 104.5^{\circ}$. These restraints are so hard that the internal water geometry is given by them and the data determine only the orientation of the water molecules. For all H atoms bound to O atoms, $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. Water molecule

metal-organic compounds

$2(\mathrm{O} 2 \mathrm{~W})$ shows some anisotropy in the anisotropic displacement parameters, the ratio of the largest and smallest eigenvalues of the anisotropic displacement parameter tensor being 4.6. In addition, the equivalent isotropic displacement parameter of $\mathrm{O} 2 W$ is 2.33 (6) times larger than that of O1W. This, together with the rather small hydrogen-bond angle between two symmetry-related water molecules $\left(132^{\circ}\right)$, points toward some residual disorder. Attempts to resolve this were not successful. It should be noted that even with a split description of the O atom, only one position for each H atom was visible in the difference map.

Data collection: KM4CCD (Kuma, 1999); cell refinement: KM4RED (Kuma, 1999); data reduction: KM4RED and XPREP (Siemens 1996a); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens 1996b) and CRYSTALMAKER (CrystalMaker Software, 2000).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1364). Services for accessing these data are described at the back of the journal.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1995). International Tables for Crystallography, Vol. C, edited by A. J. C. Wilson, ch. 9.5, pp. 685-760. Dordrecht: Kluwer Academic Publishers.
CrystalMaker Software (2000). CRYSTALMAKER 3.01. CrystalMaker Software, Oxfordshire, England.
Głowiak, T., Dao-Cong-Ngoan \& Legendziewicz, J. (1986). Acta Cryst. C42, 1494-1496.
Kepert, D. L. (1965). J. Chem. Soc. p. 4736.
Kuma (1999). KM4CCD and KM4RED. Kuma Diffraction Instruments GmbH, PSE-EPFL, CH-1015 Lausanne, Switzerland.
Marrot, F. \& Trombe, J. C. (1993). C. R. Acad. Sci. 317, 319324.

Marrot, F. \& Trombe, J. C. (1994). Polyhedron, 13, 1931-1935.
Serpaggi, F. \& Férey, G. (1998). J. Mater. Chem. 8, 2737-2741.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1996a). XPREP. Version 5.04. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1996b). XP. Version 5.04. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Speakman, J. C. (1972). Struct. Bonding (Berlin), 12, 141-199.

